48 research outputs found

    Generalized conductance sum rule in atomic break junctions

    Full text link
    When an atomic-size break junction is mechanically stretched, the total conductance of the contact remains approximately constant over a wide range of elongations, although at the same time the transmissions of the individual channels (valence orbitals of the junction atom) undergo strong variations. We propose a microscopic explanation of this phenomenon, based on Coulomb correlation effects between electrons in valence orbitals of the junction atom. The resulting approximate conductance quantization is closely related to the Friedel sum rule.Comment: 4 pages, 1 figure, appears in Proceedings of the NATO Advanced Research Workshop ``Size dependent magnetic scattering'', Pecs, Hungary, May 28 - June 1, 200

    Interactive flow behaviour and heat transfer enhancement in a microchannel with cross flow synthetic jet

    Get PDF
    This paper examines the effectiveness in combining a pulsating fluid jet for thermal enhancement in microchannel heat sinks. The proposed arrangement utilises an oscillating diaphragm to induce a high-frequency periodic fluid jet with zero net mass output at the jet orifice hence, termed "synthetic jet". The pulsed jet interacts with the fluid flow through microchannel passages altering their flow characteristics. The present study develops a 2-dimensional finite volume numerical simulation based on unsteady Reynolds-averaged Navier-Stokes equations for examining the microchannel-synthetic jet flow interaction. For a range of parametric conditions, the behaviour of this periodic flow with its special features is identified and the associated convective heat transfer rates are predicted. The results indicate that the pulsating jet leads to outstanding thermal performance in microchannel flow increasing its heat dissipation rate by about 4.3 times compared to a microchannel without jet interaction within the tested parametric range. The degree of thermal enhancement is seen to grow continuously to reach a steady value in the absence of fluid compressibility. The proposed strategy has an intrinsic ability for outstanding thermal characteristics without causing pressure drop increases in microchannel fluid passages, which is identified as a unique feature of the technique.The study also examines and presents the effects of fluid compressibility on the heat removal capacity of this arrangement. The technique is envisaged to have application potential in miniature electronic devices where localised cooling is desired over a base heat dissipation load

    Linked read technology for assembling large complex and polyploid genomes

    Get PDF
    Background: Short read DNA sequencing technologies have revolutionized genome assembly by providing high accuracy and throughput data at low cost. But it remains challenging to assemble short read data, particularly for large, complex and polyploid genomes. The linked read strategy has the potential to enhance the value of short reads for genome assembly because all reads originating from a single long molecule of DNA share a common barcode. However, the majority of studies to date that have employed linked reads were focused on human haplotype phasing and genome assembly. Results: Here we describe a de novo maize B73 genome assembly generated via linked read technology which contains ~ 172,000 scaffolds with an N50 of 89 kb that cover 50% of the genome. Based on comparisons to the B73 reference genome, 91% of linked read contigs are accurately assembled. Because it was possible to identify errors with \u3e 76% accuracy using machine learning, it may be possible to identify and potentially correct systematic errors. Complex polyploids represent one of the last grand challenges in genome assembly. Linked read technology was able to successfully resolve the two subgenomes of the recent allopolyploid, proso millet (Panicum miliaceum). Our assembly covers ~ 83% of the 1 Gb genome and consists of 30,819 scaffolds with an N50 of 912 kb. Conclusions: Our analysis provides a framework for future de novo genome assemblies using linked reads, and we suggest computational strategies that if implemented have the potential to further improve linked read assemblies, particularly for repetitive genomes

    Whole genome sequence and manual annotation of Clostridium autoethanogenum, an industrially relevant bacterium

    Get PDF
    Clostridium autoethanogenum is an acetogenic bacterium capable of producing high value commodity chemicals and biofuels from the C1 gases present in synthesis gas. This common industrial waste gas can act as the sole energy and carbon source for the bacterium that converts the low value gaseous components into cellular building blocks and industrially relevant products via the action of the reductive acetyl-CoA (Wood-Ljungdahl) pathway. Current research efforts are focused on the enhancement and extension of product formation in this organism via synthetic biology approaches. However, crucial to metabolic modelling and directed pathway engineering is a reliable and comprehensively annotated genome sequence

    A computational and experimental investigation of synthetic jets for cooling of electronics

    No full text
    Due to copyright restrictions, the access to the full text of this article is only available via subscription.Seamless advancements in electronics industry resulted in high performance computing. These innovations lead to smaller electronics systems with higher heat fluxes than ever. However, shrinking nature of real estate for thermal management has created a need for more effective and compact cooling solutions. Novel cooling techniques have been of interest to solve the demand. One such technology that functions with the principle of creating vortex rings is called synthetic jets. These jets are mesoscale devices operating as zero-net-mass-flux principle by ingesting and ejection of high velocity working fluid from a single opening. These devices produce periodic jet streams, which may have peak velocities over 20 times greater than conventional, comparable size fan velocities. These jets enhance heat transfer in both natural and forced convection significantly over bare and extended surfaces. Recognizing the heat transfer physics over surfaces require a fundamental understanding of the flow physics caused by microfluid motion. A comprehensive computational and experimental study has been performed to understand the flow physics of a synthetic jet. Computational study has been performed via FLUENT commercial software, while the experimental study has been performed by using laser Doppler anemometry (LDA). Since synthetic jets are typical sine-wave excited between 20 and 60 V range, they have an orifice peak velocity of over 60 m/s, resulting in a Reynolds number of over 2000. Computational fluid dynamics (CFD) predictions on the vortex dipole location fall within 10% of the experimental measurement uncertainty band.U.S. Department of Energ

    Reduced-order description of fluid flow with moving boundaries by proper orthogonal decomposition

    No full text
    The approach of proper orthogonal decomposition (POD) has been extensively adopted for fluid dynamics in fixed geometries. This technique is examined here for fluid flow with moving boundaries; in the context of cavitating and phase change flows, and fluid-membrane interaction. The purpose is to assess the capability of POD in extracting the salient features and offering a compact representation to the CFD solutions associated with boundary movement. The cavitating flow simulations are investigated to distill the effect of turbulence modeling, between the Launder-Spalding and a filter-based turbulence models. The lower-order eigenmodes of the flow field, for both turbulence models, show different flow structures and global parameters between higher and lower cavitation numbers. The effect of multi-timescales produced by the filter-based turbulence model is discerned by POD analysis. For 3-D, membrane wing flows, very few POD modes seem sufficient for accurate representation of the velocity field. However, reduced-order analysis of the aerodynamic performance, which is strongly dictated by pressure, may be coarsened by moving membrane dynamics. The flow with fusion is further considered for its solid-liquid phase front propagation. While few modes can sufficiently construct the flow field for the later interval of the flow, a larger number of POD modes are required to provide the flow scales for the initial part of the phase change process. © 2004 Elsevier Inc. All rights reserved

    Accurate time-dependent computations and reduced-order modeling for multiphase flows

    No full text
    In the present study, we initiate development of a non-iterative multiphase algorithm by enhancing the Pressure Implicit with Splitting of Operators (PISO) algorithm. The Gallium fusion problem, which is characterized by a solid-liquid phase front and natural convection effects, is employed as a test case for validation. The problem poses serious computational issues in form of a non-linear energy equation and a strong pressure-velocity-temperature coupling. The single-fluid modeling approach is adopted in conjunction with the enthalpy-based formulation for the temperature equation. The current algorithm computes the solution through a series of predictor-corrector steps with special treatment to achieve rapid convergence of the energy equation. The algorithm demonstrates an enhanced performance for the highly unsteady, chosen test problem. A reduced-order analysis of the simulated data is also performed by Proper Orthogonal Decomposition (POD). Specifically, impact of the constantly changing flow domain, and flow scales, on the POD implementation is highlighted. Copyright © 2004 ASME

    A Study of the Formation and Scaling of a Synthetic Jet

    No full text
    corecore